MAP08: Future Simulations of Air Quality: Are they credible? B. Duncan (PI)

Part A (A. Fiore, A. Molod)

Motivation: HTAP showed models can't simulate present US AQ!

- ✓ How can we believe prediction of future AQ?
- √ How can we believe HTAP's source-receptor study?

1) Investigate ways to improve simulation of surface ozone.

- ✓ Isoprene chemistry, aerosols, deposition, etc. in GMI-framework.
- ✓ Look at multi-years to see if variation in bias.
- ✓ Explore use of "tiles" for boundary layer issues expand to chemistry?
- ✓ Provide computationally-efficient recommendations to GFDL & GSFC CCMs.

2) Model simulations of future AQ.

- ✓ GMI redo HTAP source-receptor analysis with improved surface ozone.
- ✓ GEOS-5-CCM simulate 2050 AQ with and without improvements different?

MAP08: Future Simulations of Air Quality: Are they credible? B. Duncan (PI)

Part B (C. Randles, P. Colarco)

Motivation: Simulate future AQ in tropics – aerosols key – more biomass burning – industrialization of India, Brazil – population growth!

- ✓ Most GCMs impose off-line aerosol fields only direct effects.
- ✓ But what about the dynamical feedbacks (semi-indirect effects) on aerosols?
- 1) GEOS-5-CCM: Include dynamical feedbacks on aerosols, heating rates and aerosol microphysics (CARMA)
- ✓ Assess impact of dynamical and microphysical processes on the direct radiative forcing.
- ✓ Use aerosol observations to assess improvement.

2) Model simulations of future AQ.

✓ GEOS-5-CCM – simulate present and future AQ with and without dynamical feedbacks on aerosols. How does it impact prediction of future AQ? SSTs? etc.